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Cannabis impacts female fertility as
evidenced by an in vitro investigation and a
case-control study

Cyntia Duval 1,2 , Brandon A. Wyse 1, Noga Fuchs Weizman 1,3,
Iryna Kuznyetsova 1, Svetlana Madjunkova 1 & Clifford L. Librach1,2,4,5,6

Cannabis consumption and legalization is increasing globally, raising concerns
about its impact on fertility. In humans, we previously demonstrated that
tetrahydrocannabinol (THC) and its metabolites reach the ovarian follicle. An
extensive body of literature describes THC’s impact on sperm, however no
such studies have determined its effects on the oocyte. Herein, we investigate
the impact of THConhuman female fertility throughboth a clinical and in vitro
analysis. In a case-control study, we show that follicular fluid THC concentra-
tion is positively correlated with oocyte maturation and THC-positive patients
exhibit significantly lower embryo euploid rates than their matched controls.
In vitro, we observe a similar, but non-significant, increased oocytematuration
rate following THC exposure and altered expression of key genes implicated in
extracellular matrix remodeling, inflammation, and chromosome segregation.
Furthermore, THC induces oocyte chromosome segregation errors and
increases abnormal spindle morphology. Finally, this study highlights poten-
tial risks associated with cannabis use for female fertility.

Cannabis consumption for both medicinal and recreational use and
legalization have been rising globally1. Cannabis contains several
classes of chemicals with cannabinoids being the most prominent;
among these, tetrahydrocannabinol (THC) is the primary psy-
choactive compound and the most studied2. Notably, the con-
centration of THC in cannabis products has increased significantly,
from an average of 3% (by weight) in the 1980s to around 15% in
2020, with some strains reaching 30% of THC2. The increase in fre-
quency, ease of availability, and escalation in potency raises con-
cerns about broader impacts on global human health, including
reproductive health. Indeed, the main apprehension regarding THC
and reproductive health stems from the importance of the endo-
cannabinoid system in human reproduction3. Endocannabinoids,
including N-arachidonoylethanolamide and 2-arachidonoylglycerol,
are endogenous cannabinoids that play a central role in both male

and female reproduction3, whereas THC is an exogenous cannabi-
noid. Extensive research has documented the effects of THC onmale
reproduction, highlighting an impact on sperm deoxyribonucleic
acid (DNA) methylation4–7 and sperm parameters8 including sperm
concentration9–11, morphology12–14 and motility14. As for female
health, literature reports the impact of cannabis use during preg-
nancy on pregnancy outcomes15–18, placental development18–20 and
offspring health18,20–22. However, to our knowledge, no studies have
investigated the impact of cannabis on the human female gamete,
the oocyte, a gap partly due to the challenge associated with
obtaining these samples.

During in vitro fertilization (IVF) treatment, exogenous gona-
dotropins are administered in a process called “controlled ovarian
hyperstimulation” which recruits multiple follicles and induces fol-
licle growth. These recruited follicles, each containing an oocyte, are
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then collected by a physician in a procedure called oocyte retrieval.
Oocytes are collected along with their surrounding microenviron-
ment, including follicular fluid (FF) and supportive somatic cells
(granulosa cells). The oocytes are isolated, and mature oocytes are
used for subsequent in vitro fertilization. Using FF, our group has
previously quantified Δ9-THC and its metabolites, 11-OH-THC and 11-
COOH-THC23,24, demonstrating that these compounds could reach
the follicular niche. This is significant as it suggests that THC may
directly alter the microenvironment where the oocyte matures.
Furthermore, our group has shown that THC exposure altered
human granulosa cell methylation in a concentration dependent
manner23, and in vitro exposure modulated cannabinoid receptor
dynamics in granulosa cells24. However, no human studies and only a
few animal model studies have investigated the impact of cannabis
directly on oocyte development with conflicting results25–29.

Maturation of the oocyte is a unique and highly specialized pro-
cess beginning in utero during fetal development. It is widely accepted
that female neonates are born with a finite number of oocytes, which,
following menarche, are recruited to mature in cohorts with each
menstrual cycle30. Although oocytes are protected in the ovary by the
blood-follicle-barrier, they remain highly sensitive to environmental
factors31. Given their essential role in reproduction, any perturbations
in their development and maturation could have profound effects on
fertility and on future generations. Thus, understanding the impact of
THC on oocyte health is critical for providing informed guidance and
counseling to patients of the potential risks to their fertility and future
offspring.

In this study, we determine the impact of physiologically relevant
concentrations of THC on oocyte maturation, elucidate the tran-
scriptomic changes induced by THC exposure and its effect on chro-
mosome segregation, and compare our findings with a retrospective
cohort study. Our investigation will aid in bridging the knowledge gap
in our understanding of the sex-specific reproductive consequences of
cannabis use and contribute to more effective and evidence-based
patient counseling.

Results
THC concentrations correlate with maturation rate in IVF
Using a retrospective case-control design andmass spectrometry, we
quantified the concentration of Δ9-THC and its metabolites,11-OH-
THC and 11-COOH-THC, in the FF of patients undergoing IVF treat-
ment to determine the reproductive consequences of THC con-
sumption. Figure 1a illustrates the proportion of THC and its
metabolites measured in all samples (n = 1059). Positivity rate was
defined by the presence of 11-COOH-THC in the follicular fluid (62/
1059, 6%). 11-COOH-THC was found alone in 13% of the samples (8/
62) while Δ9-THC was co-detected in 37% of the samples (23/62) and
11-OH-THC co-detected in 2% (1/62). All three compounds were
measured in 48% of the samples (30/62). Among the positive
patients, 73% did not disclose their THC consumption on the patient
intake questionnaire. The distribution of Δ9-THC and its metabolites
showed a predominance of 11-COOH-THC (mean = 28.8 ng/mL), fol-
lowed by Δ9-THC (mean = 7.5 ng/mL), with 11-OH-THC being the least
abundant (mean = 1.7 ng/mL) (Fig. 1b). Notably, concentrations of
these metabolites did not differ between FF and matched serum
samples obtained at the time of oocyte retrieval (Fig. 1c).

A Spearman correlation analysis identified significant correla-
tions between THC metabolite concentrations and various clinical
and biochemical parameters (Fig. 1d). Specifically, concentrations of
Δ9-THC, 11-OH-THC and 11-COOH-THC were positively correlated
with oocyte maturation rate in the THC-positive group (Δ9-THC:
⍴ = 0.370, p = 0.003; 11-OH-THC: ⍴ = 0.309, p = 0.014 and 11-COOH-
THC: ⍴ = 0.295, p = 0.020). Interestingly, Δ9-THC levels were nega-
tively correlated with a patient’s Body Mass Index (BMI) (⍴ = −0.539,
p = 0.000053).

In vitro THC exposure and oocyte maturation
Patients undergoing IVF treatment andoocyte retrievalwhoconsented
for the collection of IVF waste material (immature oocytes, somatic
cells and FF) and de-identified clinical data were included in this study.
For each patient, a minimum of three immature oocytes at the germ-
inal vesicle (GV) stage were collected following the removal of somatic
cells. GV oocytes were cultured using our standard in vitro maturation
(IVM) protocol for 24h32 (control group (Ctrl), n = 96) or with the
addition of THC (treatment groups). Oocytes were treated with either
a physiologically relevant (THC1, n = 95, 25 ng/mL Δ9-THC, 5 ng/mL 11-
OH-THC, 50 ng/mL 11-COOH-THC) or a supraphysiologic (THC2,
n = 93, 100 ng/mLΔ9-THC, 50 ng/mL 11-OH-THC, 200 ng/mL 11-COOH-
THC) concentration where THC1 is based on the concentration of Δ9-
THC and its metabolites measured in the follicular fluid of IVF patients
and THC2 is based on previously reported concentrations in animal
studies23,25,29. Subsequently, oocytes were classified based on their
progression through key maturation checkpoints: germinal vesicle
(GV) and Metaphase-I (MI) (after germinal vesicle breakdown (GVBD)
and before polar body extrusion) were considered immature oocytes,
while Metaphase-II (MII) oocytes (after visible polar body extrusion)
were considered mature (Fig. 2a). Maturation rate was then calculated
per treatment group.

Oocytes treated with THC1 showed no significant change in
maturation rate (49/95, 52%, p =0.6704), while THC2 exhibited a non-
significant trend toward increasedmaturation (54/93, 58%,p = 0.1098),
compared to Ctrl (44/96, 46%) (Fig. 2b). Utilizing timelapse imaging,
oocytemorphology assessmentswereperformedpre-IVM (Ctrl:n = 92,
THC1: n = 89 and THC2: n = 85) and post-IVM (Ctrl: n = 91, THC1: n = 88,
and THC2: n = 83), and key maturation events were recorded: GVBD
(Ctrl: n = 71, THC1: n = 72 and THC2: n = 64) and extrusion of the first
polar body (Ctrl: n = 28, THC1: n = 30 and THC2: n = 31). Examples of
timelapse IVM images are provided in Supplementary Fig. 1 and cor-
responding videos are provided as Supplementary videos (Ctrl-Sup-
plementary video 1, THC1-Supplementary video 2 and THC2-
Supplementary video 3). There were no significant differences in
oocyte diameter between treatment groups either before (Ctrl:
110.6μm, THC1: 109.6μm, p = 0.2120 and THC2: 109.6μm, p =0.2120)
(Fig. 2c) or after 24 h of culture (Ctrl: 110.2μm, THC1: 110.0μm,
p =0.7416 and THC2: 108.8μm, p =0.1066). (Fig. 2d). Similarly, the
timing of GVBD (Fig. 2e) and polar body extrusion (Fig. 2f) remained
unaffected by THC exposure. Demographic data of patients included
in these analyses can be found in Supplementary Information - Sup-
plementary Table 1.

THC exposure alters the oocyte transcriptome
Single MII oocytes with good morphology and normal develop-
mental progression were sequenced using our optimized ultra-low
input RNA sequencing pipeline33 (n = 24 patients/n = 86 metaphase-II
(MII) oocytes (28 Ctrl, 27 THC1 and 31 THC2). Differential expression
analysis revealed 89 genes up-regulated and 227 genes down-
regulated greater than 2-fold (|log2FC| > 1) and p < 0.05 (Fig. 3a)
when assessing the impact of the THC1 vs Ctrl (Supplementary
Data 1). Gene Set Enrichment Analysis (GSEA) identified that upre-
gulated genes were principally associated with positive regulation of
synaptic transmission, axonemal dynein complex assembly, and
glutamate receptor signaling pathway, while the downregulated
genes were associated with protein synthesis, expression regulation
of SLITS and ROBOS and inflammatory processes (Fig. 3b, Supple-
mentary Data 3). THC2 exposure induced a greater magnitude of
transcriptomic dysregulation, with 402 up-regulated and 62 down-
regulated genes identified (Fig. 3c, Supplementary Data 2). The
upregulated genes were associated with the immune system and
apoptotic pathways while downregulated genes were associated with
attachment of spindle microtubules to kinetochores and inflamma-
tory processes (Fig. 3d, Supplementary Data 3). As illustrated by the
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Venn diagram (Fig. 3e), THC1 exposure had 266 specific DEGs, while
THC2 exposure had 414, with 50 being common to both treatment
groups (gene lists are available in Supplementary Data 4). Of these 50
common DEGs, 32 were protein-coding, 19 were up-regulated (EPYC,
RGS5, N4BP2L1, KRT19, PRR20G, KL, KCND3, ALDH3A1, SLC1A3,
TSPAN8, PLAU, COL8A2, TFAP2E, SPTSSB, BRINP3, VANGL2, RGS18,
RXFP1, and KCNMB3), 10 were down-regulated (OR4F15, MMP9,
PRRX2, IRS4, INFG, CCIN, IL33, NEUROD1, MT1HL1, and MT1H), and 3
displayed bidirectional changes (S100B, ACTA1, and ARHGEF19)
(Fig. 3f) (Detailed information available in Supplementary Data 5).
Demographic data of patients included in these analyses can be
found in Supplementary Information - Supplementary Table 2 and
Sequencing Quality Control metrics can be found in Supplemen-
tary Data 6.

THC is harmful to chromosome segregation
Subsets of MII oocytes from both the control and THC-treatment
groups were used to assess polar body ploidy status (18 Ctrl, 21 THC1,

and 21 THC2) and for spindle morphology (12 Ctrl, 12 THC1, and 12
THC2). Removal of the zona pellucida (ZP) and subsequent polar body
biopsy (Supplementary Fig. 2) allowed for someoocytes to be used for
ploidy determination by low-pass whole genome Next-Generation
Sequencing (NGS) aneuploidy using VeriSeq PGT-A which is specia-
lized in detecting aneuploidy in reproductive samples21,34 (Supple-
mentary Fig. 3) and meiotic spindle organization by confocal
microscopy allowing for precise visualization of spindle organization
and chromosome alignment (Fig. 4a). Both THC1 and THC2 treatment
led to a 9% increase in aneuploidy (Ctrl: 39%, THC1 and THC2: 48%,
p =0.7479) (Fig. 4b) and a higher proportion of complex aneuploidy,
defined by the gain or loss of more than three chromosomes35 (Ctrl:
0%, THC1 and THC2: 42%, p =0.1029) (Fig. 4c). Figure 4d reports a
subset of oocytes where both ploidy status and spindle morphology
were assessed (n = 17), without stratifying by treatment group. The
majority of oocytes that completedmeiosis I displayed normal spindle
morphology (euploid: n = 8/13, 62% and aneuploid: n = 3/4, 75%,
p >0.9999) (Fig. 4d), but not all. The hallmark characteristics of
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“normal”meiotic spindles include bipolar barrel-shaped microtubules
with the chromosomes aligned on the metaphase plate36. Whereas
“abnormal” spindles are varied in their morphology and may include
multipolar spindles, alterations in microtubule organization, and
misaligned chromosomes36. Spindle disorganization and chromosome
misalignment are shown by representative images in Fig. 4e, where
oocytes were classified as having either “normal” or “abnormal” spin-
dles. The proportion of oocytes with abnormal spindles was higher in
the THC exposed groups compared to control (Ctrl (5/12), THC1 8/12),
and THC2 (11/12), with a significant increase in THC2 (Ctrl: 42% and
THC2: 92%, p = 0.0272) (Fig. 4f). (Spindle immunostaining negative
controls ca be found in Supplementary Fig. 4)

THC decreases embryo euploidy rate in IVF
Following pairwise case-control matching, where each THC-positive
sample was matched to two THC-negative samples, a significant

decrease in embryo euploidy rate was observed in the THC-positive
group (n = 51, 60.0%), compared to the THC-negative group (n = 101,
67.0%, p = 0.0245) (Table 1). There was no significant change in
maturation, fertilization and blastocyst rates (Table 1).

To further evaluate the likelihood of adverse IVF outcomes, we
conducted multiple logistic regression analyses, focusing on clini-
cally relevant IVF outcome thresholds37: maturation rate (80%),
fertilization rate (70%), blastocyst rate (50%) and euploidy rate
(60%). We utilized backward stepwise logistic regression, including
the following covariates: oocyte age, participant body mass index
(BMI), anti-müllerian hormone (AMH), day 2/3 luteinizing hormone
(LH), and follicle stimulating hormone (FSH), (estradiol) E2 on trig-
ger, and total gonadotropin (GT) dose. The final model for both
blastulation and euploidy rates retained THC status as a significant
explanatory variable, with oocyte age being a significant covariate.
In this pairwise matched cohort, THC positivity significantly
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vided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-63011-2

Nature Communications |         (2025) 16:8185 4

www.nature.com/naturecommunications


decreased the odds of reaching a 50% blastulation rate or above
(odds ratio: 0.45, p = 0.018) and the odds of achieving a euploidy
rate above 60% (odds ratio: 0.47, p = 0.038) (Table 2). Age was also
found to significantly impact blastulation and euploidy rates, with
an odds ratio of 0.9144 (p = 0.0010) and 0.9150 (p = 0.0024),
respectively. The models for predicting blastulation rate (>50%) and
euploidy rate (>60%) demonstrated positive predictive power, with
areas under the curve (AUCs) of 0.68 and 0.67, respectively (Sup-
plementary Fig. 5).

Discussion
Understanding the impact of environmental factors and lifestyle
choices on female fertility is crucial for proper patient counseling.
With cannabis being one of the most commonly used recreational
drugs in the world1, it is critical to holistically evaluate its impact on
mental and general health, in addition to reproductive health. This
study, using donated human oocytes and an integrated multi-
disciplinary approach, reveals that exposure to THC affects oocyte
maturation, transcriptome, and induces meiotic chromosomal
imbalances associated with altered spindle morphology. Moreover,
our retrospective analysis revealed that exposure to THC was

associated with significantly lower embryo euploidy rate, likely par-
tially explained by an altered chromosomal organization as demon-
strated in the in vitro matured MII oocytes.

In our retrospective study, we measured THC concentrations in
1059 follicular fluid samples from patients undergoing IVF treatment
at CReATe Fertility Centre (Toronto, Canada) in a retrospective
matched case-control cohort. Sixty-two samples tested positive for
11-COOH-THC, resulting in a 6% positivity rate (Fig. 1a). This rate is
considerably lower than what was reported by a recent Health
Canada survey where 23% of females reported recreational cannabis
consumption within 1 year of being surveyed38. However, these
patients were counseled pre-treatment not to use recreational drugs
while undergoing IVF. The relative concentrations of Δ9-THC, 11-OH-
THC, and 11-COOH-THC are consistent with metabolism of THC in
the liver (Fig. 1b). Δ9-THC (half-life 1.3–10 days) is metabolized to 11-
OH-THC (half-life 20min–2 h) and 11-OH-THC is rapidly metabolized
to 11-COOH-THC (half-life 3–5 days), which remains in the circulation
for up to 30 days39. The consistent concentrations of THC metabo-
lites in both the follicular fluid and serum suggests passive diffusion
or transudation from the bloodstream into follicular fluid rather than
active transport into or out of the follicle (Fig. 1c).
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In a clinical IVF setting, embryologists and physicians assess
mature oocytes based on the extrusion of the first polar body30,40. This
process, known as nuclearmaturation,marks the oocyte’s progression
to metaphase-II and is considered the final stage of oocyte
maturation30,41. When we compiled the IVF outcomes of our retro-
spective cohort, we observed a positive correlation between THC
metabolites and oocyte maturation (Fig. 1d). This suggests that the
levels of THC and its metabolites present in this cohort may support
nuclear maturation through an unknown mechanism.

Parallel to our clinical retrospective study, we treated pairwise-
matched immature oocytes from patients who were negative for THC
(naiveGVs)with THC in vitro andweobserved an increasedproportion
of oocytes which achieved the MII stage (Fig. 2b). Given that factors
such as oocyte diameter have been previously reported to influence
nuclear maturation42, we confirmed that there were no differences in
oocyte size distribution across the three groups (Ctrl, THC1 and THC2)
before and after culture for 24 h (Fig. 2c, d). Finally, we alsomonitored
and recorded the timing of key maturation events using timelapse

imaging technology and showed that theGVBDoccurred slightly faster
in THC treated oocytes (Fig. 2e), but this did not reach significance,
and there were no differences in the timing of the first polar body
extrusion between THC-exposed and Ctrl groups (Fig. 2f). Previous
animal studies investigated the impact of THC on oocyte maturation
using bovine oocytes29, which is considered a better proxy to human
oocyte maturation when compared to murine model due to similar
temporal dynamics. López-Cardona et al. reported a 15% increase in
maturation rate after treating oocytes with 0.1 µM (31.45 ng/mL) Δ9-
THC for 12 h (n = 30/group)29. In contrast, a more recent and larger
study (n = 164/group) concluded that a 24 h treatment with ‘recrea-
tional cannabis doses’ of 0.32 µM (100.63 ng/mL) and 3.2 µM
(1,006.30 ng/mL) of Δ9-THC significantly reduced oocyte maturation
from 80.1% to 65.3% and 60.1%, respectively25. Of note, the latter study
used higher doses of Δ9-THC than what is measured in the FF of our
patients but neither study examined the combined effects of Δ9-THC
and itsmetabolites, whichmight alter its effect on the growing oocyte.
Collectively, our results suggest that THC exposure, at both
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physiological and supraphysiological concentrations, appears to
accelerate oocyte maturation speed and completion, consistent with
results from the Lόpez-Cardona bovine study29 and previous mouse
studies26.

Oocytes must not only successfully progress through meiosis II
to reach metaphase-II but also need sufficient time to reach cyto-
plasmic maturity to support early embryo development30,41. This
process involves the precise and faithful packaging of various com-
ponents, including maternal mRNA transcripts. mRNA production
and storage in the ooplasm is critical, since, following establishment
of the germinal vesicle, chromatin is condensed, and transcription is
halted43,44. These transcripts are critical not only for meiosis
resumption and fertilization, but also during the first 3 days of
embryonic development45, since the early embryo remains tran-
scriptionally silent, relying entirely on maternally inherited mRNA
from the ooplasm to drive cellular processes prior to embryonic
genome activation46. The selection and enrichment of critical tran-
scripts in the ooplasm have been described in the literature and are
regulated by post-transcriptional mechanisms. These complex pro-
cesses involve a sophisticated network of RNA binding proteins
(RBPs), polyadenylation factors and RNA translational and degrada-
tion machinery, which all regulate the storage, translation, and
degradation of oocyte mRNAs46.

To understand how THC affects stored maternal mRNA during
oocytematuration,we identifiedgenes associatedwith transcripts that
were differentially expressed following THC exposure (Fig. 3a, c).
Focusing on the common protein-coding transcripts, 32 genes were
identified and grouped into nine principal functions: G protein-

coupled receptor (GPCR) signaling, extracellular matrix regulation,
embryogenesis, cell-cell communication, inflammation, cytoskeleton,
detoxification, transcription factor and ion channels (Supplemen-
tary Data 5).

Among these,MMP9was significantly downregulated in both THC
treatment groups. MMP9 encodes for matrix metalloproteinase 9
(MMP-9) essential for local proteolysis of the extracellular matrix and
leukocyte migration47–49. In animal models, MMP-9 has well-
established role in ovulation and follicle rupture50–52, and in mice,
protein expression in blastocyst and early embryo is critical for
implantation53–58. In humans, several studies have investigated its role
in implantation using various trophoblast and implantation
models59–61. Dysregulation of its expression and activity is associated
with pregnancy complications and recurrent pregnancy loss62–65.
Moreover, THC has also been shown to decrease MMP-9 expression in
human amniotic epithelium66 and endothelial cancer cells67. Thus,
downregulation ofMMP9 in the ooplasmmay negatively contribute to
key ovulation events needed for fertilization, embryo development,
and implantation.

G-protein coupled receptor (GPCR) signaling was also dysregu-
lated following exposure to THC. GPCR signaling is crucial for oocyte
growth and maturation, and many GPCRs are present at the oocyte
surface, including the cannabinoid receptor 1 (CB1) and 2 (CB2)27,68.
Genes coding for Regulators of G protein Signaling (RGS), RGS5 and
RGS18, were significantly upregulated following THC treatment in our
study. These regulators are known modulate GPCR signal
transduction69. RGS5 and RGS18 belong to the RGS R4 family and have
been shown to bind with the Gα proteins, thus reducing their

Table 1 | Demographic data and in vitro fertilization outcomes of pairwise matched patients negative and positive for
tetrahydrocannabinol

Negative (n = 124) Median (IQR) Positive (n = 62) Median (IQR) p-value

THC concentrations Δ9-THC (ng/mL) – 5.3 (9.6)

11-OH-THC (ng/mL) – 0.1 (2.3)

11-COOH-THC (ng/mL) – 18.1 (29.1)

Age (years)a 30.0 (9.0) 29.5 (11) 0.4863

BMI (kg/m2) 23.4 (4.8) 24.3 (8.3) 0.9709

AMH (pmol/L) 24.4 (21.1) 25.8 (30.1) 0.7117

Day 2/3 LH (IU) 1.2 (2.7) 2.1 (3.3) 0.0275

Day 2/3 FSH (IU) 6.9 (2.5) 6.4 (3.2) 0.5714

E2 on trigger (pmol/L) 13,445 (14,553) 12,603 (9,996) 0.5473

Total GT (IU) 4,088 (1,003) 3,894 (1,025) 0.2998

Maturation rate (%)a 72.0 (22.0) 76.0 (21.5) 0.2200

Fertilization rate (%) 82.5 (17.2) 83.0 (19.0) 0.7202

Blastocyst rate (%)a 59.5 (27.2) 50.0 (40.0) 0.5128

Euploidy rate (%) 67.0 (22.0) 60.0 (26.0) 0.0245

Normality was tested using the Shapiro–Wilk test.
AMHAnti-MüllerianHormone, IQR Interquartile range, THC Tetrahydrocannabinol,BMI BodyMass Index,LH LuteinizingHormone, FSH FollicleStimulatingHormone, E2 Estradiol,GTGonadotropins.
aIndicates normally distributed data, all others are non-normally distributed. Significance was assessed using either a two-sidedMann–Whitney test or two-sided unpaired t-test, where appropriate.

Table 2 | Multiple logistic regression models for blastulation and euploidy rates

Outcomes Covariates Coefficient (β) SE p-value OR 95% CI for OR

Lower Upper

Blastulation rate >50% THC+ (Case) −0.803 0.338 0.018 0.448 0.229 0.864

Oocyte age −0.089 0.027 0.001 0.914 0.866 0.963

Euploidy rate >60% THC+ (Case) −0.759 0.365 0.038 0.468 0.226 0.952

Oocyte age −0.089 0.029 0.002 0.915 0.862 0.968

Significance was assessed using Likelihood Ratio Test (LRT)
SE Standard error, CI Coefficient intervals, OR Odds ratios, THC Tetrahydrocannabinol
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inhibitory activity70,71. They have been shown to have a crucial role in
the cell processing of the signal coming from the GPCRs72. Although
the exact role of RGS5 and RGS18 in oocyte maturation is poorly
understood, their upregulation suggests a potential impact on GPCR
signaling pathways in response to THC stimulation.

Immune pathways were also overrepresented in both treatment
groups compared to controls. For instance, IFNG and IL33 were both
significantly downregulated in THC exposed groups. It is well estab-
lished that tight regulation of inflammatory processes is critical for
implantation of the embryo in the endometrium73. Interferon-γ (IFNγ)
is a cytokine widely known for its role in inflammation and the acti-
vation ofmacrophages74. Although its role during oocytematuration is
unclear, IFNγ secretion by the conceptus is essential for implantation
in animal models75. On the other hand, Interleukin-33 (IL-33), a cyto-
kine that belongs to the IL-1 family, binds to the ST2 (IL-1RL1)
receptor76. In mice, IL-33 was found to be expressed in the oocyte and
ST2 in granulosa cells and the uterus77. In humans, altered levels or
expression of IL-33 or ST2 in various tissue and sample types were
associated with pregnancy complications like preeclampsia78–80, pre-
termbirth81–83, intrauterine growth restriction84, andmiscarriage85. The
downregulation of IL-33 we observed in THC-exposed oocytes sug-
gests theremay be potential disruption in the inflammatory processes
necessary for successful pregnancy.

A significant number of DEGs in THC-exposed oocytes are
involved in the cytoskeletal function, including KRT19, COL8A2, ACTA1
and ARHGEF19 (Supplementary Data 5). In addition to these tran-
scriptomic changes, we observed significant alterations to cytoskele-
ton machinery throughout this study. Indeed, the oocyte’s
cytoskeleton plays a crucial role in chromosome alignment, segrega-
tion, and polarity establishment86 and without appropriate formation
and regulation of key cytoskeletal functions, the oocyte is vulnerable
to chromosomal abnormalities. However, the cytoskeleton-associated
DEGs identified in this study have not been previously characterized in
oocyte development and thus require further investigation to gain a
deeper understanding of the effects of THC on these processes.

Taken together, THC exposure seems to impact critical tran-
scripts involved in key oocytematuration processes, fertilization, early
embryo development and implantation. While these transcriptomic
alterations likely result from post-transcriptional processes, the spe-
cific mechanisms by which THC affects these processes in human
oocytes remains unknown46.

Given the observed increase in nuclear maturation rate and the
altered transcriptomic profiles related to chromosome organization,
we next investigated the impact of THC on chromosome segregation.
Indeed, errors in chromosome segregation during the first meiotic
division is the most frequent cause of embryo aneuploidy87, making
the faithful establishment of chromosome segregation machinery a
critical bottleneck in the production of a chromosomally normal
embryo88,89. To investigate oocyte ploidy, we performed polar body
biopsy and low-pass whole genome sequencing. Notably, we observed
that THC exposure led to a 9% increase in aneuploidy rates (Fig. 4b).
Additionally, we observed an increase in the proportion of oocytes
with complex aneuploidies (defined as a gain or a loss of 3 or more
chromosomes)35 in the THC-treated group compared to controls
(Fig. 4c). Aneuploidies are associated with implantation failure, mis-
carriage, and are incompatible with life90. It has been postulated that
most aneuploidies arise from errors in maternal meiosis I91–96, but our
data suggest that meiosis II may also be sensitive to perturbations as
38%of the euploid oocytes hadabnormal spindlemorphology (Fig. 4d)
determining using confocal microscopy. We assessed spindle mor-
phology after 24 h incubation of oocytes with and without THC. A
normal spindle configuration is barrel shaped with chromosomes
aligned at the metaphase plate, while ‘abnormal’ configurations
include multipolar spindles and misaligned chromosomes97 (Fig. 4e).
In this study, we demonstrated a dose-dependent decrease in the

proportion of oocytes with normal spindlemorphology following THC
exposure (Fig. 4f). Correct chromosome segregation during oocyte
maturation is essential for producing euploid embryos, which have the
highest chance of establishing a healthy pregnancy98.

To address the primary clinical question regarding THC’s impact
on IVF outcomes, we used a pairwise case-control matching strategy,
where each positive sample was matched to two negative samples
based on demographic data, and we compiled the resulting matched
cohort’s IVF outcomes (Table 1). THC exposure was associated with a
marginal increase in maturation rate (Table 1), concordant with what
was obtained in our in vitro experimentations (Fig. 2b). Further, a
significant decrease in embryo euploidy rate (Table 1) and reduced
odds of obtaining a euploidy rate above 60% was observed (Table 2).
These results indicate that THC-positive patients may have fewer
euploid embryos from their IVF cycle and may experience a longer
time to pregnancy.

To deepen our understanding of our findings, we must extra-
polatewhat is known about THC interactions and pathways fromother
cell types. THC primarily elicits its functions through binding the
cannabinoid 1 and 2 receptors (CB1 and CB2), which are expressed at
all stages of oocyte maturation68. CB1 and CB2 are G protein-coupled
receptors (GPCRs) which are capable of inhibiting adenylate cyclase,
the enzyme responsible for catalyzing adenosine triphosphate (ATP)
to cyclic adenosine 3’, 5’-monophosphate (cAMP). Activation of the CB
receptors, through stimulationbyTHC, could thus lead to an inhibition
of adenylate cyclase, resulting in lowering ooplasm cAMP levels99.
Adenylate cyclase activity and the constant and high production of
cAMP is critical to prevent premature meiotic resumption100. Here, we
propose a hypothetical model of action of THC wherein THC binds to
CB1/2 activating them,which in turn inhibits adenylate cyclase activity,
reducing ooplasm cAMP concentration. Releasing the inhibition of
meiotic resumption, would then result in premature resumption of
meiosis. This untimely and premature resumption may increase the
likelihood of aneuploidy arising in the oocyte and resulting embryo
due to the premature separation of chromosomes misaligned on the
metaphase plate and an asymmetrical division of the chromosomes
into the first polar body. This hypothesis aligns with the correlation
between THC concentrations and oocyte maturation rate observed in
the retrospective cohort (Fig. 1d) and the increased oocytematuration
rate in vitro, as well as the associated reduction in euploid oocytes
(Fig. 4b) and euploid embryo rates (Table 1) we observed. Further
investigations are underway to dive deeper into THC signaling in the
oocyte and better refine this hypothetical model.

To conclude, this study comprehensively investigates and
demonstrate the impact of THC on the human oocyte. Herein, our
findings reveal significant effects on oocyte maturation, tran-
scriptomic profiles, meiotic spindle organization, and oocyte ploidy.
Collectively, this data presents compelling evidence that cannabis
consumption may negatively impact female fertility. Our integrated
and multi-faceted in vitro approach, utilizing multiple techniques and
endpoints to assess chromosome segregation, is a major strength of
this study. However, it was limited by the usage of immature GV
oocytes following ovarian hyperstimulation, which are considered
suboptimal for reproductive purposes, since they did not mature fol-
lowing initial stimulation. Furthermore, we acknowledge the impor-
tance of patient age on the oocyte ability to mature in vitro, but this
study was not statistically powered to analyze results based on patient
age. This limitation arose because the majority of GV oocytes were
retrieved from patients younger than 37 years old (81%). Also, our
study focused on identifying changes in the abundance of the pre-
stored transcripts in response to THC exposure, rather than de novo
transcription, limiting our ability to speculate on the impact of THC on
gene expression before the GV stage.

On the other hand, our retrospective cohort objectivelymeasured
THC and its metabolites to determine the impact of THC on IVF
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outcomes, overcoming biases inherent in self-reporting101. Indeed, 73%
of our patients positive for THC did not report cannabis use when
completing their patient intake questionnaire, potentially due to the
persistent stigma of recreational drug consumption. A limitation of
our retrospective study is the lack of data on cannabis consumption
habits (e.g. frequency, timing, dosage, route of consumption), and our
cohort is likely not representative of the general population, as all
patients were undergoing IVF for fertility treatment or to altruistically
donate their oocytes to intended parents. In addition, FF was not
measured for the presence of other drugs, and even though none of
the patients reported concomitant use of other drugs, self-reporting
alone cannot rule out the exposure of the follicle to these substances.
The limitations associated with the retrospective aspect of this study
and the other potential contributors (e.g. lifestyle habits) to the
observed outcomes are compensated by our in vitro study that used at
least three oocytes (one in each exposure group) per patient.

Finally, these findings underscore the need for increased aware-
ness and caution among people with ovaries, particularly those
undergoing fertility treatments. Our study highlights the importance
of informing patients about the potential risks associated with can-
nabis consumption andprovides a basis for regulatory bodies,medical
professional societies, and public health organizations to establish
recommendations and guidelines regarding cannabis consumption
during fertility treatment.

Methods
Ethical approval and cannabis regulatory licencing
All patients undergoing ART procedures were provided with the
opportunity to participate in the collection, and future use, of biolo-
gical waste material for research purposes. Patients were provided
with an Independent Review Board (IRB) approved informed consent
package containing information regarding the types of material that
would be collected following consent as well as examples of projects
thismaterialmaybeused for. Patients didnot receive compensationor
financial benefit for their participation in the collection of biological
waste material. All patients included in this study provided informed
consent for the donation of their biological waste material, which
included follicular fluid (FF) and immature (GV) oocytes as well as
associated de-identified demographic and clinical information,
including age, Body Mass Index (BMI), ovarian reserve metrics and
treatment regimens (Veritas IRB Approval #16487). To be included in
the assessment of tetrahydrocannabinol (THC) on in vitro maturation
(IVM), patients must have had 10 or more MII oocytes after stripping
and aminimumof 3GVoocytes in order to have at least oneGVoocyte
per treatment group. Last, all patients included in the assessment of
THC on IVM were confirmed to be negative for THC by LC-MS/MS
(described below). Patients were excluded if: they did not meet
inclusion criteria, had low oocyte yield (<16 oocytes), low oocyte
maturation rate (<62.5%), a previous cycle with poor fertilization rate
(<75%) and/or blastulation rate (<40%), severe male factor, advanced
maternal age (>40 years old), or who were undergoing fertility pre-
servation (oncofertility and/or social egg freezing). Moreover, if a
patient was consented for the donation of their biological waste
material but the physician and embryologist deemed rescue-IVM
(rIVM) was indicated for their clinical care, no oocytes would be col-
lected for research purposes and patients would be informed of the
addition of rIVM to their clinical treatment by the physician or another
healthcare professional. All GV oocytes included in this study were
collected andunderwent IVMbetween July 2022 and January2024. The
request and use of samples and de-identified demographic and clinical
data for this study was approved by Veritas IRB Approval #16518. For
the retrospective analysis, FF was collected from all consenting
patients undergoing IVF treatment between June 2016 and March
2023. All samples in this study were considered “female” as they are
humanoocyteswhich are chromosomally “XX”. Gender, race, ethnicity

or other socially relevant groupings were not considered in this study.
The purchase, storage and use of Δ9-THC and its metabolites for
research purposes was approved by Health Canada and all procedures
were conducted in accordance with the ‘Cannabis Act’ and ‘Cannabis
Regulations’ (License #LIC-A4MUR820SB-2020).

Exocannabinoid detection in FF
Measurements of Δ9-THC, 11-OH-THC and 11-COOH-THC in FF were
performed for every patient who donated GV oocytes, as previously
described, to exclude patients consuming cannabis for the IVM
investigation23. For the retrospective study, FF and matched serum
were measured using the same procedure. Briefly, proteins were pre-
cipitated using methanol (1:1 v/v), and the supernatants were assessed
by LC-MS/MS using a QTRAP 5500 (SCIEZ, Concord, CA, USA) and
Agilent 1290 HPLC (Agilent, Santa Clara, USA) with a calibration curve
(0.001–200 ng) of known amount of the molecules of interest. Sam-
ples above the lower limit of quantification were considered positive.
Cannabinol (CBN) and Cannabidiol (CBD) were also measured in the
samples but were undetectable.

Oocyte in vitro maturation
GV oocytes were received from consenting patients, randomly split into
three groups, and cultured using standard clinical IVM media (SAGE
One-step (CooperSurgical, Canada) + 7.5 IU/mL of Menopur (Ferring,
Canada)): Ctrl (n =96, only IVM media), THC1 (n =95, treated with a
physiological concentration of cannabis based on previous measure-
ments of cannabis in FF23: 25 ng/mL Δ9-THC (Sigma-Aldrich, Canada),
5 ng/mL 11-OH-THC (Sigma-Aldrich, Canada), 50ng/mL 11-COOH-THC
(Sigma-Aldrich, Canada)) and THC2 (n=94, treated with THC at a con-
centration based on previous animal studies25,27,29: 100ng/mL Δ9-THC,
50ng/mL 11-OH-THC, 200ng/mL 11-COOH-THC). Oocytes were
obtained from 24 patients, and their demographic data are reported in
the Supplementary Table 1. Images using an inverted bright field
microscope were taken prior and following incubation to assess oocyte
morphology. Oocytes were cultured for 24h using the EVOS FL Auto 2
(ThermoFisher, Canada) imaging system or cell culture incubator (5%
CO2 and 37 °C). Timelapse images were taken every 15min and used for
the assessment of GVBD and polar body extrusion (Ctrl: Supplementary
video 1, THC1: Supplementary video 2 and THC2: Supplementary
video 3). After 24h of culture, oocytes were processed according to the
specific endpoint (RNAseq or immunostaining/polar body biopsies).

Single oocyte mRNA sequencing
Oocytes destined for single-cell RNASeq were further stripped of
any residual cumulus cells and snap-frozen in 0.2mL tubes in less
than 1 µL phosphate-buffered saline (1 X PBS). To reduce inter-
sample variability, we selected patients with similar demographics
and stimulation parameters (Supplementary Table 2). A total of 86
oocytes from 24 patients were selected for RNASeq, 28 in Ctrl, 27 in
THC1 and 31 in THC2. cDNA from single oocytes were synthesized
using the SMART-seq v4 Ultra Low Input RNA Kit (Takara Bio Inc.,
Japan). The amplified cDNA was purified using Agencourt AMPure
XP beads (Beckman Coulter, USA) and eluted. The purified cDNA
was quantified using the Qubit dsDNA high sensitivity assay (Ther-
moFisher, Canada) and length and molarity were assessed using the
DNF-474 HS NGS Fragment Kit (1-6000 bp) with the Fragment
Analyzer 5200 (Agilent Technologies, USA). The amplified cDNA
(0.2 ng) was used to construct sequencing libraries using a modified
and miniaturized Nextera XT library preparation protocol (Illumina,
Canada) developed for the use with theMosquito HV liquid handling
robot (SPT labtech, Boston, USA). The quality of the libraries was
assessed using the same Fragment Analyzer kit DNF-474 HS NGS
Fragment Kit (1–6000 bp), quantified using Qubit dsDNA high sen-
sitivity assay (ThermoFisher), normalized and pooled. Sequencing
was performed on a NovaSeq 6000 S2 flow cell (Illumina, Canada) at
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Princess Margaret Genomics Centre (2 × 150 bp) (Toronto, Canada).
The sequencing quality control metrics are compiled in the Sup-
plementary Data 6.

Single oocyte RNASeq bioinformatics
Raw sequencing reads were trimmed based on read quality (Phred >
28) and aligned and quantified to hg38 using STAR (Spliced Tran-
scripts Alignment to a Reference; v2.7.8a)102. Low abundant transcripts
were excluded (maximum <20) and normalized using the default
normalization method built into DESeq2 (v3.5)103. We conducted dif-
ferential expression (DE) using DESeq2 comparing THC1 vs. Ctrl and
THC2 vs. Ctrl. Significantly differentially expressed genes were defined
as p-value < 0.05 and |log2fold change (FC)| of >1. The complete list of
DEgenes is available in the Supplementarydata 1 (THC1 vsCtrl) and the
Supplementary data 2 (THC2 vs Ctrl)). This analysis was conducted in
Partek Flow (version 11.0.23.1004). Gene Set Enrichment Analysis
(GSEA)104,105 was conducted to determine what gene sets were impac-
ted by exposure to THC. The resulting pathway list was cross refer-
enced with a customgene set created and supported by the Bader Lab
(University of Toronto) which is comprised of all GO database, KEGG,
Reactome, and Wiki pathways gene sets (v2024-01-01) (http://
download.baderlab.org/EM_Genesets/)106 (Supplementary Data 3) Sig-
nificant pathways were defined as having a |Normalized Enrichment
Score (NES)| > 1.5 and p-value < 0.05.

Immunostaining and imaging
After 24 h in culture, the zona pellucida (ZP) was removed by incu-
bating (30 s–2min) with EmbryoMax® Acidic Tyrode’s Solution (Milli-
pore Sigma, CA) and polar bodies were mechanically separated from
the oocytes. Oocytes were immediately fixed with 3.7% paraf-
ormaldehyde in PHEM (PIPES 12mM, HEPES 5mM, EGTA 2mM and
MgSO4・7H2O 0.8mM, pH 6.9) for 30min at room temperature (RT)
and then permeabilized in PHEM+0.25% Triton-X for 15min at RT.
After permeabilization, they were incubated overnight at 4 °C in
blocking solution (3% bovine serum albumin (BSA) + 0.05% Tween-20
in 1X PBS). On the next day, the plate was brought to RT before
transferring the oocytes in the primary antibody solution for 1 h at
37 °C (mouse anti-ɑ-Tubulin (1:250), T6199, Sigma-Aldrich, USA). Then,
the oocytes were washed three times in the wash solution (0.5%
BSA +0.05% Tween-20 in PBS) at RT and moved in the secondary
antibody solution for 2 h at 37 °C (goat anti-mouse AlexaFluor 488
(1:200), A-11001, Invitrogen, USA and Phalloidin AlexaFluor 555 (1:500)
(A34055, Invitrogen, USA). After secondary antibody solution, the
oocytes were washed three times in the wash solution and transferred
into Hoechst 33342 (1:500) for 30min. Finally, the oocytes were
transferred into 1.5 µL drops in an imaging dish (Nunc Glass Bottom
Dish, ThermoScientific, CA) covered with paraffin oil and 0.2 µm
z-stacks were captured using Leica SP8 confocal microscope using the
63× objective with oil and a zoom factor set at 8 at the Advanced
Optical Microscopy Facility (Toronto, Canada). Deconvolution was
applied on the images using Huygens software version 23.10 (https://
svi.nl/Huygens-Software) and images were visualized using Imar-
isViewer 10.1.1. Negative controls consisted of GV oocytes to observe
the absence of spindle structure and stained MII-oocytes without the
mouse anti-ɑ-Tubulin primary antibody (Supplementary Fig. 4).

PB biopsy, whole genome amplification, sequencing and
analysis
Polar bodies were separated from the oocytes after removal of the ZP
eliminating possible somatic cell contamination (as shown in Supple-
mentary Fig. 3). Polar bodies were individually snap-frozen at −80 °C in
less than 2 µL and blinded samples were sent for whole genome chro-
mosome copy number variation assessment (CNV) to the CReATe
Reproductive Genetics sequencing platform. CNV analysis was per-
formed by low-pass whole genome Next Generation Sequencing using

validated clinical workflow on Illumina platform. Briefly, gDNA was
amplified using SurePlexWhole GenomeAmplification (WGA) (Illumina,
CA), according tomanufacturer’s instructions. Amplified gDNAwas then
tagmented and indexed using Nextera XT (Illumina, CA). The indexed
libraries were purified using AMPure XP beads (1:1 ratio) and normalized
usingmagnetic beads. The normalized libraries were pooled, denatured,
and sequenced on a NextSeq 550 (paired end, 2 × 75bp). NxClinical
version 6.0 (Bionano, CA) was used for chromosome CNV analysis and
data visualization according to our standard clinical procedure (2 mil-
lion reads/sample, CNV resolution of >10Mb). Optimization experi-
mentations demonstrated the concordance between polar body
chromosome numbers and its sister oocyte (Supplementary Fig. 3).

Statistical analysis
Datasets were first assessed for normality using the Shapiro–Wilk test.
Statistical significance was determined using two-sided Fisher’s exact
test for contingency analysis (maturation rate, spindle morphology and
euploid rates), One-way ANOVAwith a two-sided Holm–Sidak’smultiple
comparison test for continuous normally distributed datasets (oocyte
diameter), or Kruskal–Wallis with a two-sided Dunn’s multiple compar-
ison test for continuous non-normally distributed datasets. The specific
statistical test is indicated throughout table and figure legends. Sig-
nificance was defined as p<0.05. For the retrospective analysis, we
performed pairwise case-control matching, where each THC-positive
sample was matched to two THC-negative samples, as determined by
the presence/absence of 11-COOH-THC in the FF. Matching was con-
ducted using the FUZZY matching command in Statistical Package for
Social Sciences (SPSS-v29) based on the following covariates: oocyte
age, participant bodymass index (BMI), anti-müllerian hormone (AMH),
day 2/3 luteinizing hormone (LH), and follicle stimulating hormone
(FSH), (estradiol) E2 on trigger, and total gonadotropin (GT) dose. AMH,
LH, FSH and E2 were quantified during the clinical assessment using the
Cobas e411 instrument (Roche, Basel, Switzerland). Matching success
was determined using a two-tailed Mann–Whitney test for non-
parametric distribution. Statistical significance of the IVF outcomes
was determinedusing two-tailedMann–Whitney test for non-parametric
distribution (fertilization and euploid rates) and unpaired two-tailed t-
test for parametric distribution (maturation and blastocyst rates) using
GraphPad Prism 10.2.3. Numbers in parentheses in each figure legends
represent distinct samples and not repeated measures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated in this study are provided in the Supplementary
Information/Source Data file. The normalized read count expression
matrix and metadata have been deposited in the Gene Expression
Omnibus (GEO) database with accession number GSE297757. Due to
participant privacy concerns and institutional ethics restrictions, raw
sequencing files (fastq) have been deposited at the European Genome-
phenome Archive (EGA), which is hosted by the European Bioinfor-
matics Institute (EBI) and the Centre for Genomic Regulation (CRG),
under accession number EGAS50000001052. Further information
about EGA can be found at https://ega-archive.org. Expected time-
frame for response to access requests is 10 business days and the data
will be available for the duration of the study as defined by the Data
Access Agreement associated with this dataset. Source data are pro-
vided with this paper.
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